Skip to main content

Industrial VS Commercial VS Residential Electrical Installation

Hey, in this article we are going to see the comparison between Industrial, Commercial, and Residential Electrical installation. We will make compare with respect to types, procedure, cost, safety, equipment, and many other essential factors. First of all, let's know what is electrical installation. Electrical installation is a procedure to install electrical circuits, wirings, equipment, and machines. The electrical installation can be divided into three major parts - 1. Installing of electrical equipment or device or machine 2. Make electrical connection or wiring for them 3. Provide them proper voltage and power to operate them. These different types of electrical installation required different types of electricians and management. For example, commercial electrical installation requires commercial electricians, industrial electrical installation requires industrial electricians, and residential electrical installation requires residential electricians. We already published an

Using the IR2110 high-low side driver - explanation and circuit examples

In many situations, we need to use MOSFETs configured as high-side switches. Many a times we need to use MOSFETs configured as high-side and low-side switches. Such as in bridge circuits. In half-bridge circuits, we have 1 high-side MOSFET and 1 low-side MOSFET. In full-bridge circuits we have 2 high-side MOSFETs and 2 low-side MOSFETs. In such situations, there is a need to use high-side drive circuitry alongside low-side drive circuitry. The most common way of driving MOSFETs in such cases is to use high-low side MOSFET drivers. Undoubtedly, the most popular such driver chip is the IR2110. And in this article/tutorial, I will talk about the IR2110.

Using the IR2110 high-low side driver - explanation and circuit examples

Notice that the IR2110 comes in two packages – 14 pin through-hole PDIP package and the 16-pin surface mount SOIC package.

Now let's talk about the different pins.

VCC is the low-side supply and should be between 10V and 20V. VDD is the logic supply to the IR2110. It can be between +3V to +20V (with reference to VSS). The actual voltage you choose to use depends on the voltage level of your input signals. Here’s the chart:

It is common practice to use VDD = +5V. When VDD = +5V, the logic 1 input threshold is slightly higher than 3V. Thus when VDD = +5V, the IR2110 can be used to drive loads when input “1” is higher than 3 point something volts. This means that it can be used for almost all circuits, since most circuits tend to have around 5V outputs. When you’re using microcontrollers the output voltage will be higher than 4V (when the microcontroller has VDD = +5V, which is quite common). When you’re using SG3525 or TL494 or other PWM controller, you are probably going to have them powered off greater than 10V, meaning the outputs will be higher than 8V when high. So, the IR2110 can be easily used.

You may lower the VDD down to about 4V if you’re using a microcontroller or any chip that gives output of 3.3V (eg dsPIC33). While designing circuits with the IR2110, I had noticed that sometimes the circuit didn’t work properly when IR2110 VDD was selected as less than +4V. So, I do not recommend using VDD less than +4V.

In most of my circuits, I do not have signal levels which have voltages less than 4V as high and so I use VDD = +5V.

If for some reason, you have signals levels with logic “1” having lower than 3V, you will need a level converter / translator that will boost the voltage to acceptable limits. In such situations, I recommend boosting up to 4V or 5V and using IR2110 VDD = +5V.

Now let’s talk about VSS and COM. VSS is the logic supply ground. COM is “low side return” – basically, low side drive ground connection. It seems that they are independent and you might think you could perhaps isolate the drive outputs and drive signals. However, you’d be wrong. While they are not internally connected, IR2110 is a non-isolated driver, meaning that VSS and COM should both be connected to ground.

HIN and LIN are the logic inputs. A high signal to HIN means that you want to drive the high-side MOSFET, meaning a high output is provided on HO. A low signal to HIN means that you want to turn off the high-side MOSFET, meaning a low output is provided on HO. The output to HO – high or low – is not with respect to ground, but with respect to VS. We will soon see how a bootstrap circuitry (diode + capacitor) – utilizing VCC, VB and VS – is used to provide the floating supply to drive the MOSFET. VS is the high side floating supply return. When high, the level on HO is equal to the level on VB, with respect to VS. When low, the level on HO is equal to VS, with respect to VS, effectively zero.

A high signal to LIN means that you want to drive the low-side MOSFET, meaning a high output is provided on LO. A low signal to LIN means that you want to turn off the low-side MOSFET, meaning a low output is provided on LO. The output on LO is with respect to ground. When high, the level on LO is equal to the level of VCC, with respect to VSS, effectively ground. When low, the level on LO is equal to the level on VSS, with respect to VSS, effectively zero.

SD is used as shutdown control. When this pin is low, IR2110 is enabled – shutdown function is disabled. When this pin is high, the outputs are turned off, disabling the IR2110 drive.

Now let’s take a look at the common IR2110 configuration for driving MOSFETs in both high and low side configurations – a half bridge stage.

D1, C1 and C2 along with the IR2110 form the bootstrap circuitry. When LIN = 1 and Q2 is on, C1 and C2 get charged to the level on VB, which is one diode drop below +VCC. When LIN = 0 and HIN = 1, this charge on the C1 and C2 is used to add the extra voltage – VB in this case – above the source level of Q1 to drive the Q1 in high-side configuration. A large enough capacitance must be chosen for C1 so that it can supply the charge required to keep Q1 on for all the time. C1 must also not be too large that charging is too slow and the voltage level does not rise sufficiently to keep the MOSFET on. The higher the on time, the higher the required capacitance. Thus, the lower the frequency, the higher the required capacitance for C1. The higher the duty cycle, the higher the required capacitance for C1. Yes, there are formulae available for calculating the capacitance. However, there are many parameters involved, some of which we may not know – for example, the capacitor leakage current. So, I just estimate the required capacitance. For low frequencies such as 50Hz, I use between 47µF and 68µF capacitance. For high frequencies like 30kHz to 50kHz, I use between 4.7µF and 22µF. Since we’re using an electrolytic capacitor, a ceramic capacitor should be used in parallel with this capacitor. The ceramic capacitor is not required if the bootstrap capacitor is tantalum.

D2 and D3 discharge the gate capacitances of the MOSFET quickly, bypassing the gate resistors, reducing the turn off time. R1 and R2 are the gate current-limiting resistors.

+MOSV can be up to a maximum of 500V.

+VCC should be from a clean supply. You should use filter capacitors and decoupling capacitors from +VCC to ground for filtering.

Now let’s look at a few example application circuits of the IR2110.D1, C1 and C2 along with the IR2110 form the bootstrap circuitry. When LIN = 1 and Q2 is on, C1 and C2 get charged to the level on VB, which is one diode drop below +VCC. When LIN = 0 and HIN = 1, this charge on the C1 and C2 is used to add the extra voltage – VB in this case – above the source level of Q1 to drive the Q1 in high-side configuration. A large enough capacitance must be chosen for C1 so that it can supply the charge required to keep Q1 on for all the time. C1 must also not be too large that charging is too slow and the voltage level does not rise sufficiently to keep the MOSFET on. The higher the on time, the higher the required capacitance. Thus, the lower the frequency, the higher the required capacitance for C1. The higher the duty cycle, the higher the required capacitance for C1. Yes, there are formulae available for calculating the capacitance. However, there are many parameters involved, some of which we may not know – for example, the capacitor leakage current. So, I just estimate the required capacitance. For low frequencies such as 50Hz, I use between 47µF and 68µF capacitance. For high frequencies like 30kHz to 50kHz, I use between 4.7µF and 22µF. Since we’re using an electrolytic capacitor, a ceramic capacitor should be used in parallel with this capacitor. The ceramic capacitor is not required if the bootstrap capacitor is tantalum.

D2 and D3 discharge the gate capacitances of the MOSFET quickly, bypassing the gate resistors, reducing the turn off time. R1 and R2 are the gate current-limiting resistors.

+MOSV can be up to a maximum of 500V.

+VCC should be from a clean supply. You should use filter capacitors and decoupling capacitors from +VCC to ground for filtering.

Now let’s look at a few example application circuits of the IR2110.

In Fig. 7 we see the IR2110 being used to drive a full bridge. The functionality is simple and you should understand it by now. A common thing that is often done is that, HIN1 is tied/shorted to LIN2 and HIN2 is tied/shorted to LIN1, enabling the control of all 4 MOSFETs from 2 signal inputs, instead of 4 as shown below in Fig. 8.

In Fig. 9 we see the IR2110 being used as a single high-side driver. The circuit is simple enough and follows the same functionality described above. One thing to remember is that, since there is no low-side switch, there must a load connected from OUT to ground. Otherwise the bootstrap capacitors can not charge.


Comments

Popular posts from this blog

What is the Joule Thief Circuit and how does it work

A joule thief is a compact, low-cost, and easy-to-build self-oscillating voltage booster that is often used to drive small loads(3.3v 5mm LED). Other names for this circuit include blocking oscillator , joule ringer , and vampire torch . The circuit is a blocking oscillator variation that functions as an unregulated voltage boost converter. The output voltage is increased at the price of a larger input current draw, but the output integrated (average) current is reduced and the luminescence brightness is reduced. This joule thief Circuit uses a 1.2 V or 1.5 V single-cell electric battery to power LEDs. However, as the supply voltage reaches 3V, the LED begins to light. The theory of operation of a Joule thief circuit Joule Thief Circuit The joule thief circuit operates on a fairly basic basis. It operates by quickly switching the transistor. When the transistor is first switched off, a tiny amount of current flows via the resistor, primary winding, and base-emitter junction, assistin

What is an electric fuse | Fuse resistance | Functions

To avoid a short circuit or device failure, an electrical fuse is a low melting point copper or other metal wire that breaks due to heat-induced by Overcurrent or excessive load. The flow of electric current warms up the items through which it passes. Electric water heaters, light bulbs, and irons are just a few examples of electric gadgets that make use of this phenomenon. It does, however, have certain downsides. For example, if this equipment becomes overheated, it may become damaged or even catch fire! In reality, the undesirable high electric currents harm not only these gadgets, but all of the appliances in our home. Any gadget can only withstand a certain quantity of electric current. If the current surpasses that limit, the device's components heat up, perhaps resulting in a fire! Is there a way to prevent this from happening? An "electric fuse" is a device that is used to prevent this from happening. It comes in a variety of forms and sizes. This is how it usuall

What is Diode

A diode is a semiconductor device with two terminals called the anode and the cathode. Typically, allowing the flow of current in one direction, called the forward direction, current trying to flow in the reverse direction is blocked. They’re like the one-way valve of electronics. If the voltage across a diode is negative, no current can flow, and the diode looks like an open circuit. In such a situation, the diode is said to be OFF or reverse biased. What is Diode As long as the voltage across the diode isn’t negative, it’ll "turn on" and conduct current. Ideally, a diode would act like a short circuit (0V across it) if it was conducting current. When a diode is conducting current, it’s forward biased. Diode characteristics Diode Characteristics Operation Mode On (Forward biased) Off (Reverse biased) Current Through I>0 I=0 Voltage Across V=0 V<0 Diode looks like Short circuit Open circuit Most diodes are made with semiconductor materials such as silicon, germanium,